
International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1800
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Backpropagation Networks and Multilayer
Perceptron

Saroj Singh

Abstract: Backpropagation(BP) or generalized delta learning rule has been discussed. The algorithm uses least mean square error
minimization strategy. Modifications in the weight are taken along the –ive gradient direction to reduce the error. The activation function
used in the BP is sigmoidal function. The limitation of BP is that it is prone to local minima just like gradient descent formula.
Backpropagation network is Multilayer Feed-forward network with different network transfer function in Artificial Neural Network and a more
powerful learning rule. The learning rule is called Backpropagation which is a kind of gradient descent technique with backward error
propagation. It is a supervised learning method and is an implementation of the Delta learning rule. It requires a teacher that knows or can
calculate the desired output for any given input.

Index Term-Keywords: weights; perceptron; gradient; threshold; activation; enhancing; radial basis;
—————————— ——————————

1. INTRODUCTION

Backpropagation is a systematic method of training
multilayered artificial neural networks. It is built on high
mathematical foundation and has very good application
potential. Rumelhard, Hiklton and Williams (1986)[1]
presented a clear and concise description of the
backpropagation algorithm. Parker (1982) has also shown to
have anticipated Rumelhart’s work. An Artificial Neural
Network (ANN) Architecture the multilayer Feedforward
(MLFF) with Backpropagation (BP) learning. This type of
network is sometimes called multilayer perception because
of its similarity to perceptron networks with more than one
layer. First we review the perceptron model to show how
this is altered to form MLFF networks. The learning rule is
called Backpropagation which is a kind of gradient[2]
descent technique with backward error propagation

2. PERCEPTRON

The perceptron is a program with true(1) or false(0) for
inputs we present to it by repeatedly “studying”.
Single layer prceptron:
A single layer perceptron consist of an input & an output
layer. The perceptron function applied as hard-limiting
function. An output unit will assume the value 1 if the sum
of weight inputs is greater than its threshold i.e.
∑ W ji Xi > ϴj
Where
Wji is weight from unit j to j
Xi is the input from i
ϴj is the threshold on unit j
Let there are two classes A and B. if ∑ W ji Xi > ϴj then object

will be classified as class A otherwise B. Suppose there are n

inputs then the equation
∑ W ji Xi = ϴj
Where i=1, 2, ……. n forms a hyper plane dividing the space
in two halves.

Perceptron Algorithm:
1. Weight initialization
Set all the weights &mode thresholds to small random
numbers.
2. Calculate of Activation
(a) The activation level of an input unit is determined by
instance presented to the networks.
(b) The activation level Oj of an output unit i determined by
Oj=Fh(Wji Xi - ϴj)
Where Fh is hard-limiting function
Fh(a) = {11 if a>0, 0 false
3. Weigh training
(a) Adjust weights by
Wji (t+1)=Wji (t) + ∆Wji
Where Wji(t) is the weigh from unit i to unit j at time t and
∆Wji is the weigh adjustment.
(b) The weigh change may be computed by Delta learning
rule
∆Wji = ηδjXi
Where
∆ = trial independent learning rate (0<η<1)
δj = the error at unit j and δj = Tj-Oj
Where Tj is the desired output activation and Oj is the actual
output activation at output unit j.
(c) Repeat the iterations till convergence.
Example:
In a single layer perceptron unit 1 receives input from unit 2
and 3 given that:
W1,2=(-3), W1,3=(2), x2,x3=1, ϴ1=1.
Calculate O1.
Suppose the desired output T1=1. How we adjust the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1801
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

weights consider η=0.3.
According to activation level Oj
Oj=Fh(Wji Xi - ϴj) Wji=W1,2 and W1,3
O1= Fh (((-3)*1+2*1)-1)
 = Fh (-2)
 = 0
δj = 1-0=1
according to ∆Wji = ηδjXi
∆W1,2 = ηδjXi=((0.3)*1*1)=0.3
∆W1,3 = ηδjXi=((0.3)*1*1)=0.3
W1,2 = W1,2(odd) + ∆W1,2
W1,3 = W1,3(odd) + ∆W1,3
 = 0.3+2
The threshold is always negative of weight from bias unit let
W1,b is the bias unit that is
W1,b=(- ϴ1)= -1
∆W1,b = 0.3*1*1=0.3
W1,b = -1+0.3 = 0.7
Thus the threshold is changed to 0.7

3. MULTILAYER PERCEPTRON

A multilayer perceptron is a network of simple neuron called
perceptron. The basic concept of single perceptron was
introduced by Rosenblatt in 1958. A multilayer perceptron is
a feed-forward neural network with at least one hidden
layer. It can deal with nonlinear classification problems.

Example

Suppose an output node receives 2 inputs its threshold is set
to 1.5 and its input weights are both set 1. Threshold when
both the input unit are active (i.e. 1) the output node will be
active. In this case the output node performs a logical AND
operation on the threshold is set to 0.5 then any active input
can activate the node. In this case the output node performs a
logical OR operation. This by choosing a different set of
weights are threshold, a node can implement a different
logical operation.

4. ARCHITECTURE OF A BACKPROPAGATION
NETWORK

Rosenblatt’s perceptron was introduced and its limitation
with regard to the solution of linearly inseparable or non-
linearly separable problems was discussed[3].
The initial approach to solve such linearly inseparable
problems was to have more than one perceptron each set up
of the inputs then combining their outputs into another
perceptron would produced a final indication of the class to

which the input belongs. Let us take the example of XOR
problems discuss the following diagram.

Figure 1 Combining perceptron to solve XOR problem

The combining of perceptrons to solve the XOR problem can
solve problem.
In the structure takes the weighted sum of thresholds it and
outputs one(1) or zero (0). For the perceptron the first layer,
the input comes from the actual input of the problem, while
for the perceptron in the second layer the inputs are outputs
of the first layer. The perceptron of the second layer do not
know which of the real inputs from first layer on or off.
It is impossible to strengthen the connections between active
inputs and strengthen the correct part of the networks. The
actual inputs are effectively marked off from the outputs
units by intermediate layer. The two state of neuron being on
or off shown in figure 2 do not give us any indication of the
scale by which we have to adjust the weights. The hard
hitting threshold functions remove the information that is
needed if the network is to successfully learn. The network is
unable to determine which of the input weight should be
increased & which one and so, it is unable to work, to
produce a better solution next time.

Output 1.0 output

 ϴ Input 0 Input
Threshold at ϴ Threshold at 0

Perceptron

 * *

 * *

 *

 *

1

2

3

p
e
r
c
e
p

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1802
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

“Step” or Heaviside function
Figure 2 Hard hitting threshold function

The way to go around the difficulty using the step function
as the threshold process [4] is to adjust it slightly & and to
use a slightly different nonlinearity.

5. MULTILAYER PERCEPTRON CHARACTERISTICS
Multilayer perceptron have the following characteristics such
as:
1. Sample

Structure
 Inputs Input Layer

 Weight Layer 1

 Hidden Layer

 Weight Layer 2

 Outputs

2. Type Feed-forward
3. Neuron

Layer
1 Input Layer
1 or More Hidden Layer
1 Output Layer

4. Input
Value
Type

Binary

5. Activation
Function

Hard – Limiter (Hitting) Sigmoid

6. Learning
Method

Supervised

7. Learning
Algorithm

Delta Learning Back propagation (mostly
used)

Table 1: Characteristics of multilayer perceptron

Learning methods:
The neural network has also been called the “connectionist”.
It consists a large number of neuron like processing elements
and a large number of weighted connections between the
elements. The weights on the connections encode the
knowledge of network. It uses a highly parallel, distributed
control and can learn to adjust itself automatically. The
various algorithms are described below:
Back propagation (Generalized Delta learning rule)
Radial basis function network
Reinforcement learning
Art network

Back propagation (Generalized Delta learning rule)

It was first described by Paul Werbos in 1974, but it was not
until 1986, through the work of David E. Rumelhart,
Geoffrey E. Hinton and renold J. William, that it gained
recognition.

Backpropagation network is multilayered feedforward
network with different transfer function in ANN and a more
powerful learning rule. The learning rule is called
“Backpropagation”, which is kind of gradient descent
technique with backward error propagation.
It is a supervised learning method and is an implementation
of the delta rule. It requires a teacher that knows, or can be
calculate, the desired output for any given input.

Radial basis function network

A Radial basis function (RBF) network is a 2 layer network
whose output unit forms a linear combination of the basis
functions computed by hidden units. And each hidden unit
implements s a radial activated function. The output unit
implements a weighted sum of hidden output units. The
input to RBF network is nonlinear while the output is linear.
Due to their nonlinear properties, RBF networks are able to
model complex mappings. The most common basis function
can be activation function is the hidden layer. The most
common basis function chose is Gaussian function, in which
case the activation level Oj of the hidden unit j is calculated
as
Oj = exp[-(X - Wj)* (X-Wj)/2sj2]
Where X is the input vector Wj is the weight vector associate
with hidden unit j and sj2 is the normalization factor. The
output of the hidden unit lie between 0 and 1; the closer the
input is center of the Gaussian, the lager the response of the
node. The activation level of an output unit is determined by
Oj = ƏWjiOi
The output units from a linear combination of nonlinear
basis functions, and thus the overall network performs a
nonlinear transformation of the input.

Reinforcement learning

This method of learning[5] is mixture of the previous two
types. The network is presented with the input, but only told
that that the answer is wrong or right. It is expected to
organize in some manner to ensure a correct answer is more
likely on the next presented of the input.

6. ART NETWORK

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1803
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Adaptive Resonance Theory(ART) networks are most useful
for pattern clustering, classification and recognition. They
can also perform pattern association with some modification.
These networks work on binary or analog –value input.
Their ability to generalize is limited because ART networks
can lack the hidden layer of neurons which perform feature
recognition or pattern recognition or pattern recognition in
the backpropagation network.
Training: There are two basic methods of training ART[6] –
based neural networks: slow and fast. In the slow learning
method, the degree of training of the recognition neuron’s
weights towards the input vector is calculated to continuous
values with differential equation s and thus dependent on
the length of time the input vector is presented. With fast
learning, algebric equations are used to calculate degree of
weight adjustments to be made,and banary values are used.
While fast learning is effective and efficient for a varity of
tasks, the slow learnig method is more biologically possible
and can be used with continous – time networks.

ART1
ART 1 is the simplest variety of ART networks, accepting
only binary inputs.

ART 2
ART 2 extends network capabilities to support continous
inputs.

ART 2-A
ART 2-A is a streamlined form of ART 2 with a drastically
accelerated runtime and with qualitative results being only
rarely inferior to the full ART 2 implementation.
ART 3
ART 3 builds on ART 2 by simulating rudimentary
neurotransmitter regulation of synaptic activity by
incorporating simulated sodium (Na+) and calcium (Ca2+)
ion the system’s equations, which results in a more
physiologically realistic means of partially inhabiting
categories that trigger mismatch resets.
Fuzzy ART
Fuzzy Art implements fuzzy logic into ART’s pattern
recognition, thus enhancing generalizability. On optional
and very useful feature of fuzzy ART is complement coding,
a means of incorporating the absence of features into pattern
classifications, which goes a long way towards preventing
efficient and unnecessary category proliferation.
ARTMAP
ARTMAP also known as Predictive ART, combines two
slightly modified ART-1 or ART-2 units into a suprtvised
learning structure where the first unit takes the input data

and the second takes the correct output data, then used to
make the minimum possible adjustment of the vigilance
parameter in the first unit in order to make the correct
classification.
Fuzzy ARTMAP
Fuzzy ARTMAP is merely ARTMAP using fuzzy ART units,
resulting in a corresponding increase in efficiency.

Model for Multilayer perceptron
The adapted perceptrons are arranged in layers and so the
model is termed as multilayer perceptron. This model has
three layers:
An input layer
Hidden layer
Output layer

An Input Layer

The nodes in this layer are called input units which encodes
the instance present to the network for processing. For
example each input unit may be designated by an attribute
value possessed by instance.

Hidden layer
The nodes in this layer are called hidden units, which are not
directly observable and hence hidden. They provide the
nonlinearities for the network.
Output layer
The nodes in this layer are called output nodes which
encodes possible concepts or values to be assigned to the
instance under consideration for example each output unit
presents a class of objects.

7. BACK PROPAGATION LEARNING METHODS
Consider the network as shown in figure 3 where the
subscript I-input, H-hidden, O-output denoted neurons[7].

II1 OI1 V11 IH1 OH1 W11 IO1
OO1

II2 OI2 V21 IH2 OH2 W22 IO2
OO2

IIl OIl Vl1 IHm OHm WM1 IOn
OOn

1

2

l m

2

1

n

2

1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1804
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Input Layer Hidden Layer Output Layer
 L nodes m nodes n nodes
Figure 3: Multilayer feed-forward back propagation network

Consider a problem in which an “nset” of “l” inputs and the
corresponding “nset” of “n” output data is given as shown in
table:
No.
of
set

Input Output

 I1 I2 -------I l O1 O2 -------On
1 0.3 0.4 ----- 08 0.1 0.56 ------- 0.82
2
-
-
n
set

Table 2: Problem of nset

Input layer computation:
Consider linear activation function the output of the input
layer is input of input layer (considering g=tanØ=1). Taking
one set of data.
{O}I = {I}I
l x1 l x1
the hidden neurons are connected by synapses to input
neurons and (denote) Vij is the weight of the arc between ith
input neuron to jth hidden neuron as shown in equation (1).

IHP=VIPOI1+V2POI2 + ---------VIPOIl (1)
Where (P=1,2,3,--------m)

The input to the hidden neuronis the weighted sum of
outputs of the input neurons to get IHP (i.e the input to the
Pth hidden neuron). Denoting weight matrix or connectivity
matrix between input neurons and hidden neurons as
between [V]
lxm
We can get an input to the hidden neurons as
{I}H = [V]T {O}I
Mx1 mxl lx1

Hidden Layer Computation:
Considering sigmoidal function[8] or squashed – S function,
the output of the Pth hidden neuron is given by
OHP = 1

((1+e−λ(IHP− nP))
 (2)

Where
OHP = output of the pth hidden neuron
IHP = input of the pth hidden neuron

ϴHP = threshold of the pth neuron
A non –zero threshold neuron is computationally equivalent
to an input that is always held at –1 and the non-zero
threshold becomes the connecting weight values shown in
figure

 OI1
II1

 OI2 V1P
II2
 V2P

 OI3 V3P
OHP
II3
 VlP

 OIl
IIl ϴHP (Non
Zero threshold)

 OIO=-1
IIO= -1

Figure 4: Hidden layer computation

Output layer computation:

Consider sigmoid function. The output of the qth output
neuron is given by
Ooq = 1/(1 + e-λ(Ioq-θoq)
Where :
Ooq is the output of the qth output neuron,
Ioq is the input of the qth output neuron,
θoq is the threshold of the qth output neuron,

8. BACKPROPAGATION ALGORITHM

If given are P training pairs
{z1, d1, z2,d2, ………, zp, dp}
Where zi is (l x 1), di is (k x 1), and i=1,2,,…..,P.
Note
(i) lth component of each xi is of value -1 since input vectors
have been segmented. Size J-1 of the hidden layer having
outputs y is selected.
(ii) the Jth component of y is of value -1, since hidden layer
outputs have also been augmented; y is (J x 1) and o is (K x
1).

1

2

3

O

l

1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 1805
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Step1: η > 0, Emax chosen
Weight W and Y are initialized at small random values; W is
(K x J), V is (J x I).
q <- 1, p <-1, E <- 0
Step2: Training step starts here
Input is presented and the layers output computed
z <- zp, d <- dp
yj <- f(vtj z), for j = 1,2, …. , J
where vj, a column vector , is the jth now of V and
ok <- f(wtk y), for k = 1,2, …. , K
where wk, a column vector , is the kth now of W.
Step3: Error value is computed:
E <- 1

2
 (dk- ok)2 + E for k = 1,2, …. , K

Step4: Error signal vectors δ0 and δy of both layer are
computed. Vector is δ0 is (K x 1), δy is (J x 1)
 The error signal terms of the output layer in this step are
δ0k = 1

2
 (dk- ok)2 (1 – o2) for k = 1,2, …. , K

the error signal terms of the hidden layer in this step are
 δyj = 1

2
 (1 – y2j)2 ∑k

k=1
δ0k wkj, for j = 1,2, …. , J

Step5: Output layer weights are adjusted :
Wkj <- wkj + η δ0k yj, for k = 1,2, …. , K and j = 1,2, …. , J
Step6: Hidden layer weights are adjusted :
vji <- vji + η δyj zi, for j = 1,2, …. , J and i = 1,2, …. , I
Step7: if p<P the p<-p+1, q<- q+1 and go to step 2 otherwise
go to step 8.
Step8: The training cycle is completed.

For E< Emax terminate the training session. Output weights
W, V, q, and E.
If E > Emax, then E<- 0, p<- 1, and initiate the new training
cycle by going to step2.

How to solve the numerical base on BP
Consider three layers input, hidden and output layer.

 II OI IH OH IO OO

 (i) Input Layer (ii) Hidden Layer (iii) Output Layer

Figure 5: Layers of BP

The input to the input layer is represented by II and the
output of this layer OI .
The input to the hidden layer is represented by IH and the
output layer of hidden layer OH.
The input to the output layer is represented by OO and the
output of output layer OO.
Write the input for input layer from the given question. The
output of this layer is same as the input because there is no

processing in the input layer.
Now calculate IH. IH = [V]t * OI. Where [V] is the weight
between the input and hidden layer.
Next is to calculate the output of hidden layer OH.
OH= 1

[1+exp(−λnet)]

 where λ is a constant and net is the value
calculated above i.e. net = weight * input for the layer. i.e.,
OH = 1/[1 + exp(-λ. IH)]

Calculate Io . Io = [W]t * OH. where [W] is the weight
between the hidden layer and the output layer.
Calculate OO . OO = 1/[1 + exp(-λnet)]. where λ is a constant
and net is the value calculated above i.e. net = weight * input
for the layer. i.e., Oo = 1/[1 + exp(-λ. Io)]
Calculate the error by E = [1/2]* (d – O)2.
Calculate the error signal term for the output layer
δo = 1

2
 [(dk- ok)2 (1 – ok2)]*

Next Calculate error signal term for the hidden layer
δy = wtj δo fty. where fty = OH (1 - OH)
Adjust the weights of the output layer
Wnew = Wold + η δo . OHt
Adjust the weight of the hidden layer
Vnew = Vold + η δy II t

9. REFERRENCES

Rumelhart; Williams, Ronald J. (8 October 1986). Learning
representations by back-propagating errors. doi:
10.1038/323533a0
Kelley, Henry J. (1960). Gradient theory of optimal flight
paths. Ars Journal. 30 (10): 947–954. doi:10.2514/8.5282
R. J. Williams and D. Zipser. Gradient-based learning
algorithms for recurrent networks and their computational
complexity. In Back-propagation: Theory, Architectures and
Applications. Hillsdale, NJ: Erlbaum, 1994.
Arthur E. Bryson (1961, April). A gradient method for
optimizing multi-stage allocation processes. In Proceedings
of the Harvard Univ. Symposium on digital computers and
their applications.
Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
Learning, 8, 229-256.
Stuart Russell; Peter Norvig (1975). Artificial Intelligence A
Modern Approach. p. 578.
Williams, R. J. and Zipser, D. (1989). A learning algorithm for
continually running fully recurrent neural networks. Neural
Computation, 1, 270-280.
Werbos, Paul John (1975). Beyond Regression: New Tools for
Prediction and Analysis in the Beha

IJSER

http://www.ijser.org/

	1. Introduction
	2. Perceptron
	3. Multilayer perceptron
	4. Architecture of a Backpropagation Network
	5. Multilayer perceptron characteristics
	6. Art network
	7. Back Propagation Learning Methods
	8. Backpropagation Algorithm
	9. REFERRENCES

