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Abstract: Backpropagation(BP) or generalized delta learning rule has been discussed. The algorithm uses least mean square error 
minimization strategy. Modifications in the weight are taken along the –ive gradient direction to reduce the error. The activation function 
used in the BP is sigmoidal function. The limitation of BP is that it is prone to local minima just like gradient descent formula. 
Backpropagation network is Multilayer Feed-forward network with different network transfer function in Artificial Neural Network and a more 
powerful learning rule. The learning rule is called Backpropagation which is a kind of gradient descent technique with backward error 
propagation. It is a supervised learning method and is an implementation of the Delta learning rule. It requires a teacher that knows or can 
calculate the desired output for any given input. 

Index Term-Keywords: weights; perceptron; gradient; threshold; activation; enhancing; radial basis; 
——————————      ——————————

1. INTRODUCTION 
 
Backpropagation is a systematic method of training 
multilayered artificial neural networks. It is built on high 
mathematical foundation and has very good application 
potential. Rumelhard, Hiklton and Williams (1986)[1] 
presented a clear and concise description of the 
backpropagation algorithm. Parker (1982) has also shown to 
have anticipated Rumelhart’s work. An Artificial Neural 
Network (ANN) Architecture the multilayer Feedforward 
(MLFF) with Backpropagation (BP) learning. This type of 
network is sometimes called multilayer perception because 
of its similarity to perceptron networks with more than one 
layer. First we review the perceptron model to show how 
this is altered to form MLFF networks. The learning rule is 
called Backpropagation which is a kind of gradient[2] 
descent technique with backward error propagation 
 

2. PERCEPTRON 
 
The perceptron is a program with true(1) or false(0) for 
inputs we present to it by repeatedly “studying”.  
Single layer prceptron: 
A single layer perceptron consist of an input & an output 
layer. The perceptron function applied as hard-limiting 
function. An output unit will assume the value 1 if the sum 
of weight inputs is greater than its threshold i.e. 
∑ W ji Xi > ϴj 
Where  
Wji is weight from unit j to j  
Xi  is the input from i 
ϴj is the threshold on unit j 
Let there are two classes A and B. if ∑ W ji Xi > ϴj then object 

will be classified as class A otherwise B. Suppose there are n 

inputs then the equation 
∑ W ji Xi = ϴj  
Where i=1, 2, ……. n forms a hyper plane dividing the space 
in two halves. 
 
Perceptron Algorithm: 
1. Weight initialization  
Set all the weights &mode thresholds to small random 
numbers. 
2. Calculate of Activation 
(a) The activation level of an input unit is determined by 
instance presented to the networks. 
(b) The activation level Oj of an output unit i determined by 
Oj=Fh(Wji Xi - ϴj) 
Where Fh is hard-limiting function  
Fh(a) =   {11 if a>0,   0 false 
3. Weigh training  
(a) Adjust weights by  
Wji (t+1)=Wji (t) + ∆Wji 
Where Wji(t) is the weigh from unit i to unit  j at time t and 
∆Wji is the weigh adjustment. 
(b) The weigh change may be computed by Delta learning 
rule 
∆Wji = ηδjXi 
Where  
∆ = trial independent learning rate (0<η<1) 
δj = the error at unit j and δj = Tj-Oj  
Where Tj is the desired output activation and Oj is the actual 
output activation at output unit j.  
( c ) Repeat the iterations till convergence. 
Example: 
In a single layer perceptron unit 1 receives input from unit  2 
and 3 given that:  
W1,2=(-3), W1,3=(2), x2,x3=1, ϴ1=1.  
Calculate O1. 
Suppose the desired output T1=1. How we adjust the 
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weights consider η=0.3. 
According to activation level Oj 
Oj=Fh(Wji Xi - ϴj)  Wji=W1,2 and W1,3 
O1= Fh (((-3)*1+2*1)-1) 
     = Fh (-2) 
     = 0 
δj = 1-0=1 
according to ∆Wji = ηδjXi 
∆W1,2 = ηδjXi=((0.3)*1*1)=0.3 
∆W1,3 = ηδjXi=((0.3)*1*1)=0.3 
W1,2 = W1,2(odd) + ∆W1,2 
W1,3 = W1,3(odd) + ∆W1,3 
          = 0.3+2 
The threshold is always negative of weight from bias unit let 
W1,b is the bias unit that is  
W1,b=(- ϴ1)= -1 
∆W1,b = 0.3*1*1=0.3 
W1,b = -1+0.3 = 0.7 
Thus the threshold is changed to 0.7 

3. MULTILAYER PERCEPTRON 
 
A multilayer perceptron is a network of simple neuron called 
perceptron. The basic concept of single perceptron was 
introduced by Rosenblatt in 1958. A multilayer perceptron is 
a feed-forward neural network with at least one hidden 
layer. It can deal with nonlinear classification problems. 
 
Example 
 
Suppose an output node receives 2 inputs its threshold is set 
to 1.5 and its input weights are both set 1. Threshold when 
both the input unit are active (i.e. 1) the output node will be 
active. In this case the output node performs a logical AND 
operation on the threshold is set to 0.5 then any active input 
can activate the node. In this case the output node performs a 
logical OR operation. This by choosing a different set of 
weights are threshold, a node can implement a different 
logical operation. 
 

4. ARCHITECTURE OF A BACKPROPAGATION 
NETWORK  

 
Rosenblatt’s perceptron was introduced and its limitation 
with regard to the solution of linearly inseparable or non-
linearly separable problems was discussed[3]. 
The initial approach to solve such linearly inseparable 
problems was to have more than one perceptron each set up 
of the inputs then combining their outputs into another 
perceptron would produced a final indication of the class to 

which the input belongs. Let us take the example of XOR 
problems discuss the following diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Combining perceptron to solve XOR problem 
 
The combining of perceptrons to solve the XOR problem can 
solve problem. 
In the structure takes the weighted sum of thresholds it and 
outputs one(1) or zero (0). For the perceptron the first layer, 
the input comes from the actual input of the problem, while 
for the perceptron in the second layer the inputs are outputs 
of the first layer. The perceptron of the second layer do not 
know which of the real inputs from first layer on or off. 
It is impossible to strengthen the connections between active 
inputs and strengthen the correct part of the networks. The 
actual inputs are effectively marked off from the outputs 
units by intermediate layer. The two state of neuron being on 
or off shown in figure 2 do not give us any indication of the 
scale by which we have to adjust the weights. The hard 
hitting threshold functions remove the information that is 
needed if the network is to successfully learn. The network is 
unable to determine which of the input weight should be 
increased & which one and so, it is unable to work, to 
produce a better solution next time. 
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“Step” or Heaviside function  
Figure 2 Hard hitting threshold function 
 
The way to go around the difficulty using the step function 
as the threshold process [4] is to adjust it slightly & and to 
use a slightly different nonlinearity. 

5. MULTILAYER PERCEPTRON CHARACTERISTICS 
Multilayer perceptron have the following characteristics such 
as:  
1. Sample 

Structure  
           Inputs  Input Layer 
 
        
 
                                          Weight Layer 1 
      
                                   Hidden Layer 
 
         
                                           Weight Layer 2 
                           
 
                        Outputs 

2.  Type Feed-forward 
3.  Neuron 

Layer  
1 Input Layer 
1 or More Hidden Layer 
1 Output Layer 

4.  Input 
Value 
Type 

Binary 

5. Activation 
Function  

Hard – Limiter (Hitting) Sigmoid 

6.  Learning 
Method  

Supervised 

7.  Learning 
Algorithm 

Delta Learning Back propagation (mostly 
used) 

Table 1: Characteristics of multilayer perceptron 
 
Learning methods:  
The neural network has also been called the “connectionist”. 
It consists a large number of neuron like processing elements 
and a large number of weighted connections between the 
elements. The weights on the connections encode the 
knowledge of network. It uses a highly parallel, distributed 
control and can learn to adjust itself automatically. The 
various algorithms are described below: 
Back propagation (Generalized Delta learning rule)   
Radial basis function network 
Reinforcement learning 
Art network  
 

Back propagation (Generalized Delta learning rule) 
 
It was first described by Paul Werbos in 1974, but it was not 
until 1986, through the work of David E. Rumelhart, 
Geoffrey E. Hinton and renold J. William, that it gained 
recognition. 
 
Backpropagation network is multilayered feedforward 
network with different transfer function in ANN and a more 
powerful learning rule. The learning rule is called 
“Backpropagation”, which is kind of gradient descent 
technique with backward error propagation. 
It is a supervised learning method and is an implementation 
of the delta rule. It requires a teacher that knows, or can be 
calculate, the desired output for any given input.  
 
Radial basis function network  
 
A Radial basis function (RBF) network is a 2 layer network 
whose output unit forms a linear combination of the basis 
functions computed by hidden units. And each hidden unit 
implements s a radial activated function. The output unit 
implements a weighted sum of hidden output units. The 
input to RBF network is nonlinear while the output is linear. 
Due to their nonlinear properties, RBF networks are able to 
model complex mappings. The most common basis function 
can be activation function is the hidden layer. The most 
common basis function chose is Gaussian function, in which 
case the activation level Oj of the hidden unit j is calculated 
as 
Oj = exp[-(X - Wj)* (X-Wj)/2sj2] 
Where X is the input vector Wj is the weight vector associate 
with hidden unit j and sj2 is the normalization factor. The 
output of the hidden unit lie between 0 and 1; the closer the 
input is center of the Gaussian, the lager the response of the 
node. The activation level of an output unit is determined by  
Oj = ƏWjiOi  
The output units from a linear combination of nonlinear 
basis functions, and thus the overall network performs a 
nonlinear transformation of the input. 
 
Reinforcement learning  
 
This method of learning[5] is mixture of the previous two 
types. The network is presented with the input, but only told 
that that the answer is wrong or right. It is expected to 
organize in some manner to ensure a correct answer is more 
likely on the next presented of the input. 
 

6. ART NETWORK  
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Adaptive Resonance Theory(ART) networks are most useful 
for pattern clustering, classification and recognition. They 
can also perform pattern association with some modification. 
These networks work on binary or analog –value input. 
Their ability to generalize is limited because ART networks 
can lack the hidden layer of neurons which perform feature 
recognition or pattern recognition or pattern recognition in 
the backpropagation network. 
Training:  There are two basic methods of training ART[6] – 
based neural networks: slow and fast. In the slow learning 
method, the degree of training of the recognition neuron’s 
weights towards the input vector is calculated to continuous 
values with differential equation s and thus dependent on 
the length of time the input vector is presented. With fast 
learning, algebric equations are used to calculate degree of 
weight adjustments to be made,and banary values are used. 
While fast learning is effective and efficient for a varity of 
tasks, the slow learnig method is more biologically possible 
and can be used with continous – time networks. 
 
ART1  
ART 1 is the simplest variety of ART networks, accepting 
only binary inputs. 
 
ART 2 
ART 2 extends network capabilities to support continous 
inputs. 
 
ART 2-A   
ART 2-A is a streamlined form of ART 2 with a drastically 
accelerated runtime and with qualitative results being only 
rarely inferior to the full ART 2 implementation. 
ART 3 
ART 3 builds on ART 2 by simulating rudimentary 
neurotransmitter regulation of synaptic activity by 
incorporating simulated sodium (Na+) and calcium (Ca2+) 
ion the system’s equations, which results in a more 
physiologically realistic means of partially inhabiting 
categories that trigger mismatch resets.  
Fuzzy ART    
Fuzzy Art implements fuzzy logic into ART’s pattern 
recognition, thus enhancing generalizability. On optional 
and very useful feature of fuzzy ART is complement coding, 
a means of incorporating  the absence of features into pattern 
classifications, which goes a long way towards preventing 
efficient and unnecessary category proliferation.  
ARTMAP  
ARTMAP also known as Predictive ART, combines two 
slightly modified ART-1 or ART-2 units into a suprtvised 
learning structure where the first unit takes the input data 

and the second takes the correct output data, then used to 
make the minimum possible adjustment of the vigilance 
parameter in the first unit in order to make the correct 
classification. 
Fuzzy ARTMAP  
Fuzzy ARTMAP is merely ARTMAP using fuzzy ART units, 
resulting in a corresponding increase in efficiency.   
 
Model for Multilayer perceptron  
The adapted perceptrons are arranged in layers and so the 
model is termed as multilayer perceptron. This model has 
three layers: 
An input layer  
Hidden layer  
Output layer 
 
An Input Layer 
 
The nodes in this layer are called input units which encodes 
the instance present to the network for processing. For 
example each input unit may be designated by an attribute 
value possessed by instance. 
 
Hidden layer 
The nodes in this layer are called hidden units, which are not 
directly observable and hence hidden. They provide the 
nonlinearities for the network. 
Output layer 
The nodes in this layer are called output nodes which 
encodes possible concepts or values to be assigned to the 
instance under  consideration  for example each output unit 
presents a class of objects. 

7. BACK PROPAGATION LEARNING METHODS 
Consider the network as shown in figure 3 where the 
subscript I-input, H-hidden, O-output denoted neurons[7]. 
 
 
II1                           OI1  V11  IH1                        OH1  W11  IO1                   
OO1   
 
 
 
II2                          OI2  V21  IH2                    OH2     W22  IO2                   
OO2 
 
 
 
 
IIl                          OIl      Vl1  IHm          OHm  WM1 IOn                    
OOn 
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Input Layer  Hidden Layer  Output Layer 
       L nodes         m nodes n nodes 
Figure 3:  Multilayer feed-forward back propagation network 
 
Consider a problem in which an “nset” of “l” inputs and the 
corresponding “nset” of “n” output data is given as shown in 
table:  
No. 
of 
set 

Input Output 

 I1 I2 -------I l O1 O2 -------On 
1 0.3 0.4 ----- 08 0.1  0.56 ------- 0.82 
2    
-   
-   
n 
set 

  

Table 2: Problem of nset  
 
Input layer computation: 
Consider linear activation function the output of the input 
layer is input of input layer (considering g=tanØ=1). Taking 
one set of data. 
{O}I = {I}I 
l x1         l x1 
the hidden neurons are connected by synapses to input 
neurons and (denote) Vij is the weight of the arc between ith 
input neuron to jth hidden neuron as shown in equation (1). 
 
IHP=VIPOI1+V2POI2 + ---------VIPOIl              (1) 
Where (P=1,2,3,--------m) 
 
The input to the hidden neuronis the weighted sum of 
outputs of the input neurons to get IHP (i.e the input to the 
Pth hidden neuron). Denoting weight matrix or connectivity 
matrix between input neurons and hidden neurons as 
between [V] 
lxm 
We can get an input to the hidden neurons as  
{I}H = [V]T  {O}I 
Mx1    mxl  lx1 
 
Hidden Layer Computation: 
Considering sigmoidal function[8] or squashed – S function, 
the output of the Pth hidden neuron is given by  
OHP = 1

((1+e−λ(IHP− nP))
                                                        (2) 

Where  
OHP = output of the pth hidden neuron 
IHP   = input of the pth hidden neuron 

ϴHP = threshold of the pth neuron 
A non –zero threshold neuron is computationally equivalent 
to an input that is always held at –1 and the non-zero 
threshold becomes the connecting weight values shown in 
figure  
 
                                     OI1                          
II1 
 
        OI2                            V1P 
II2 
                            V2P 
                                                      
                                    OI3                   V3P                                    
OHP 
II3 
                             VlP 
                                                         
                                                       OIl 
IIl                                                                        ϴHP        (Non 
Zero threshold) 
                                                    
                                   OIO=-1       
IIO= -1 
 
Figure 4: Hidden layer computation 
 
Output layer computation: 
 
Consider sigmoid function. The output of the qth output 
neuron is given by 
Ooq = 1/(1 + e-λ(Ioq-θoq) 
Where :  
Ooq  is the output of the qth output neuron, 
Ioq  is the input of the qth output neuron, 
θoq  is the threshold of the qth output neuron, 
 

8. BACKPROPAGATION ALGORITHM 
 
If given are P training pairs  
{z1, d1, z2,d2,  ………, zp, dp} 
Where zi is (l x 1), di is (k x 1), and i=1,2,,…..,P.  
Note  
(i) lth component of each xi is of value -1 since input vectors 
have been segmented. Size J-1 of the hidden layer having 
outputs y is selected. 
(ii) the Jth component of y is of value -1, since hidden layer 
outputs have also been augmented; y is (J x 1) and o is (K x 
1). 
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Step1: η > 0, Emax chosen  
Weight W and Y are initialized at small random values; W is 
(K x J), V is (J x I). 
q <- 1, p <-1, E <- 0 
Step2: Training step starts here  
Input is presented and the layers output computed   
z <- zp, d <- dp 
yj <- f(vtj z), for j = 1,2, …. , J 
where vj, a column vector , is the jth now of V and  
ok  <- f(wtk y), for k  = 1,2, …. , K    
where wk, a column vector , is the kth now of W. 
Step3: Error value is computed: 
E <- 1

2
    (dk- ok)2   + E   for  k  = 1,2, …. , K    

Step4: Error signal vectors δ0 and δy of both layer are 
computed. Vector is δ0 is (K x 1), δy  is (J x 1)  
 The error signal terms of the output layer in this step are  
δ0k   =  1

2
    (dk- ok)2  (1 – o2)    for  k  = 1,2, …. , K    

the error signal terms of the  hidden layer in this step are 
 δyj   =  1

2
    (1 – y2j)2 ∑k

k=1
δ0k  wkj,    for  j  = 1,2, …. , J    

Step5: Output  layer weights are adjusted : 
Wkj <- wkj + η δ0k yj, for  k  = 1,2, …. , K and  j  = 1,2, …. , J 
Step6: Hidden  layer weights are adjusted :   
vji <- vji + η δyj  zi, for  j = 1,2, …. , J and  i  = 1,2, …. , I 
Step7: if p<P the p<-p+1, q<- q+1 and go to step 2 otherwise 
go to step 8. 
Step8: The training cycle is completed. 
 
For E< Emax terminate the training session. Output weights 
W, V, q, and E. 
If E > Emax, then E<- 0, p<- 1, and initiate the new training 
cycle by going to step2. 
 
How  to solve the numerical base on BP 
Consider three layers input, hidden and output layer. 
 
 
      II               OI         IH               OH        IO                OO                     
 
 
  (i) Input Layer       (ii) Hidden Layer     (iii) Output Layer 
 
Figure 5: Layers of BP 
 
The input to the input layer is represented by II  and the 
output of this layer OI . 
The input to the hidden layer is represented by IH and the 
output layer of hidden layer OH. 
The input to the output layer is represented by OO and the 
output of output layer OO. 
Write the input for input layer from the given question. The 
output of this layer is same as the input because there is no 

processing in the input layer. 
Now calculate IH. IH = [V]t * OI. Where [V]  is the weight 
between the input and hidden layer.   
Next is to calculate the output of hidden layer OH.  
OH= 1

[1+exp(−λnet)]

    where λ is a constant and net is the value 
calculated above i.e. net = weight * input for the layer. i.e.,  
OH   =  1/[1 + exp(-λ. IH)] 
 
Calculate Io . Io = [W]t * OH. where [W] is the weight 
between the hidden layer and the output layer. 
Calculate OO . OO = 1/[1 + exp(-λnet)]. where λ is a constant 
and net is the value calculated above i.e. net = weight * input 
for the layer. i.e.,  Oo   =  1/[1 + exp(-λ. Io)] 
Calculate the error by E = [1/2]* (d – O)2. 
Calculate the error signal term for the output layer   
δo   =  1

2
   [ (dk- ok)2  (1 – ok2  )]* 

Next Calculate error signal term for the hidden layer 
δy = wtj δo fty. where fty = OH (1 - OH) 
Adjust the weights of  the output layer 
Wnew = Wold + η δo   . OHt 
Adjust the weight of the hidden layer 
Vnew = Vold  + η δy II t 
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